Volvo’s XC40 Recharge Pure Electric

Volvo XC40 Recharge Pure Electric available to order now amid surging interest in battery-powered cars

  • The first of five electric Volvo cars to be launched in the next five years
  • Capable of more than 249 miles on a single charge, versus average UK daily drive distance of 30 miles
  • Fast-charging potential: 80% of capacity in 40 minutes
  • Will deliver running-cost savings and tax benefits typical of electric cars
  • First Volvo to include pioneering Google Android-powered infotainment system
  • No internal combustion engine means extra storage space
  • One of the safest cars on the road
  • Launch expands Volvo’s already market-leading range of plug-in vehicles
  • XC40 Recharge Pure Electric P8 available from £53,155
  • UK deliveries anticipated from early 2021
Volvo XC40 Recharge Plug-in Hybrid

The Volvo XC40 Recharge Pure Electric – Volvo’s first all-electric car – is now available for UK customers to order.

The first of five fully electric cars to be launched by the Swedish company over the next five years, the XC40 Recharge Pure Electric P8 is capable of a travelling more than 249 miles on a single charge, and can be charged to 80% of its battery capacity in as little as 40 minutes using a fast charger. Being an electric car, it will deliver significant savings to owners in running costs, as well as tax benefits.

Inside, the car benefits from the company’s brand-new infotainment system powered by Google Android, as well as taking the XC40’s already renowned use of interior space even further.

Kristian Elvefors, Volvo Car UK’s Managing Director, said: “For Volvo Cars, the future is electric. The battery-powered XC40 spearheads our ambitious sustainability strategy, while bringing the huge benefits of electric driving – and more – to an already award-winning package.”

A milestone in one of the automotive industry’s boldest electrification strategies

Volvo’s first entrant into the compact premium SUV segment when it was launched in 2018, the XC40 has seen unprecedented success, winning a host of prestigious awards – including European Car of the Year in 2018 – and quickly becoming the firm’s best-selling model in the UK. The Recharge Pure Electric variant comes at the perfect time, with almost three quarters of consumers considering an all-electric car for their next purchase1.

The fully electric XC40 SUV – Volvo’s first electric car and one of the safest on the road

The XC40 Recharge Pure Electric marks a major milestone in Volvo Cars’ electrification strategy, which is one of the boldest from any traditional car maker. As part of a long-term ambition to be climate-neutral by 2040, the company aims to reduce tailpipe emissions by 50% per car, and for half of all new vehicles it sells globally to be pure electric, by 2025.

The all-electric XC40 also expands Volvo’s already comprehensive range of plug-in vehicles, now sold under the Recharge brand, with customers already able to purchase a plug-in hybrid version of every model in the Volvo range.

Volvo XC40 Recharge Plug-in Hybrid

While the recently launched plug-in hybrid XC40 is ideal for those making the transition to electric driving – its 28-mile electric range is backed up by a petrol engine for greater distances – the Pure Electric is the perfect car for those ready to commit to all-electric motoring. The average distance driven each day by UK motorists is 30 miles2, so its 249-plus-mile range more than covers most people’s daily requirements – especially if home or workplace charging is installed meaning a full charge at the start of each journey.

The XC40 P8’s long range does not come at the expense of performance, with its twin electric motors producing 408hp to deliver a 0-62mph time of only 4.9 seconds.

Interior design: making clever even cleverer

While the XC40 already follows the principle of doing more with less, the Recharge Pure Electric version takes this even further. The lack of an internal combustion engine frees up space for an additional 30-litre storage compartment or ‘frunk’ under the front bonnet, while the placement of the batteries under the centre of the car means space is not compromised elsewhere.

Volvo XC40 Recharge Plug-in Hybrid

As with any other XC40, the battery-powered version comes equipped with clever interior touches such as a removable waste bin, a fold-out hook in the glove compartment for bags, and a useful boot divider complete with hooks for keeping shopping bags separate and upright. A pair of sizeable front door bins come courtesy of the traditionally door-housed speakers being moved to the base of the windscreen.

The interior of the battery-powered XC40 also carries over the strong focus on sustainability from other variants, with the door linings and carpets made from 97% recycled plastic bottles.

Rethinking infotainment

The all-electric XC40 marks the debut of Volvo Cars’ brand-new Android-powered infotainment system, which gives customers unprecedented personalisation increased intuitiveness and new embedded Google technologies and services.

Total integration of Android Automotive OS, Google’s open-source Android platform, means services such as Google Maps, Google Assistant and other automotive apps will be built in.

For the first time on a Volvo car, software and operating system updates will be available over the air, meaning an XC40 Recharge Pure Electric will improve over its lifetime rather than being at its peak on leaving the factory.

One of the safest cars on the road

In spite of the challenges presented by the lack of an internal combustion engine, the electric XC40 is one of the safest cars on the market. Volvo Cars’ safety engineers have totally redeveloped the frontal crash structure, while introducing a new and unique safety structure for the passengers and battery – helping to keep occupants as safe as they are in any other Volvo.

The fully electric XC40 SUV – Volvo’s first electric car and one of the safest on the road

The XC40 Recharge Pure Electric is also the first Volvo to feature a new version of Pilot Assist, the driver-assistance technology that deploys steering, acceleration and braking support to help take the strain during long motorway journeys and sitting in traffic. The system now uses Google Maps for information such as speed limits and curves in the road to improve its functionality.

A new Emergency Stop Assist function is now included, meaning that if the driver is not holding the steering wheel while Pilot Assist is activated, the driver will be warned in different stages until the vehicle is brought to a safe stop.

(Source: Volvo Media)

25 years of Bosch ESP®: no more skidding

Breakthrough for road safety

In the EU alone, the electronic stability program has saved some 15,000 lives.
Worldwide, 82 percent of all new passenger cars feature the anti-skid system.
Harald Kroeger: “The development of ESP® was a milestone on the path to our ‘vision zero’ of no more road deaths.”

Stuttgart, Germany – A wet road and a sudden evasive maneuver: there was a time when such a situation would frequently have ended in a ditch or against a crash barrier, and not rarely with fatalities or severe injuries. Almost 25 years ago to the day, a remedy was finally provided in the shape of a pioneering invention – the ESP® electronic stability program that Bosch and Daimler-Benz first launched in S-class vehicles in 1995. Since then, ESP® has been keeping vehicles safely on track, also in critical situations. Bosch accident researchers estimate that in the EU alone, the anti-skid system has saved some 15,000 lives over the past 25 years, as well as preventing just under half a million accidents involving personal injury. Together with the seatbelt and airbag, ESP® is one of the most important life-savers in a vehicle. “The development of the electronic stability program was a milestone on the path to our ‘vision zero’ of no more road deaths,” says the Bosch board of management member Harald Kroeger. “ESP® is an outstanding example of what we mean by ‘Invented for life.” The innovation may be from 1995, but there is nothing dated about it: Bosch has continuously improved its anti-skid system, and produced more than 250 million ESP® systems to date. Modern cars are inconceivable without this electronic guardian angel. Worldwide, 82 percent of all new vehicles are equipped with ESP®. In 2017, this figure was 64 percent.

Testing ESP® on the Schwieberdingen test route in 1984 Testing ESP® on the Schwieberdingen test route in 1995 25 years of Bosch ESP®: no more skidding 25 years of Bosch ESP®: no more skidding Testing ESP® in Sweden in 1995 25 years of Bosch ESP®

Testing ESP® on the Schwieberdingen test route in 1984
“ The development of the electronic stability program was a milestone on the path to our ‘vision zero’ of no more road deaths. ”
Bosch board of management member Harald Kroeger

ESP® can prevent up to 80 percent of all skidding accidents

Especially when roads are wet or icy, when evading unexpected obstacles such as animals on the road, and also when driving into a bend too fast, the electronic stability program intervenes. With ESP® on board, up to 80 percent of all skidding accidents can be prevented. It combines the functions of the ABS antilock braking system and the TCS traction control system, but can do considerably more. It also detects vehicle skidding movements, and actively counteracts them.

The anti-skid system uses information about vehicle dynamics to detect whether the car is heading in the direction the driver is steering. If there is a discrepancy between these two factors, ESP® intervenes. This may sound simple, but is in fact a complex process. Smart sensors help compare steering angle and vehicle trajectory 25 times a second. If the two diverge, ESP® reduces engine torque and brakes individual wheels. In this way, the system helps the driver prevent the vehicle from breaking away or skidding – effectively nipping many accidents in the bud.

Breakthrough following the elk test

The story behind this achievement is a long one. It started in the 1980s with initially independent efforts by Bosch and Daimler-Benz to achieve more vehicle stability. From 1992 until market launch, experts from the two companies worked together in a project unit. The legendary elk test of 1997 helped the system achieve a breakthrough: during tests for a Swedish automotive magazine, a Mercedes Benz A-class tipped over when making an abrupt evasive maneuver. Mercedes-Benz responded by making ESP® standard equipment. Since that time, more and more vehicles of many different automakers have adopted the anti-skid system.

Fewer accidents, fewer injuries, fewer fatalities – legislators have also recognized the benefits of ESP® and made it a mandatory feature of vehicles in many parts of the world. In the EU, the mandating process was gradual. From November 2011, it was initially mandatory for new passenger-car and commercial-vehicle types, and from November 1, 2014, for all newly registered passenger cars and commercial vehicles. And also in Argentina, Australia, Brazil, Canada, China, Ecuador, Israel, Japan, Malysia, New Zealand, Russia, South Korea, Turkey, and the United States, the anti-skid system is either legally mandated or a self-imposed commitment. Experience from Europe shows that if the proportion of vehicles featuring the system rises, accident numbers fall.

“ ESP® has taken road safety to a new level. ”
Bosch board of management member Harald Kroeger

Basis for automated driving

“ESP® has taken road safety to a new level,” Kroeger says. And it has done so across a diverse range of vehicle types. Bosch offers customized ESP® systems for all powertrain types, from combustion engines to electric motors, and for vehicles of all kinds, from micro cars to commercial vehicles. Even for motorized two-wheelers, the company has developed a kind of ESP®. The MSC motorcycle stability control that Bosch launched in 2013 ensures the best possible stability in all riding situations, and is a further pioneering road-safety achievement.

At the same time, ESP® is the basic technology for many driver assistance systems, as well as for the automated driving with which Bosch is pursuing its vision zero. “Whether new or tried and tested, Bosch technologies alert and support drivers in critical situations. And increasingly, they are in a position to assume monotonous and fatiguing tasks. This gives us an opportunity to further reduce the number of accidents and road deaths,” Kroeger says. Whether with or without a driver at the wheel, Bosch will be nipping accidents in the bud in the future as well.

Next generation Volvo cars to be powered by Luminar LiDAR technology for safe self-driving

Volvo Cars, a global leader in automotive safety, is setting new safety and technology standards by partnering with tech firm Luminar to provide their industry-leading LiDAR and perception technology for Volvo’s next generation cars.

The partnership will deliver Volvo’s first fully self-driving technology for highways and paves the way for future active safety developments.

Volvo Cars’ next generation SPA 2 modular vehicle architecture will be available as hardware-ready for autonomous drive from production start in 2022, with the Luminar LiDAR seamlessly integrated into the roof.

Cars based on SPA 2 will be updated with software over the air and if customers decide to opt for it, the Highway Pilot feature that enables fully autonomous highway driving will be activated once it is verified to be safe for individual geographic locations and conditions.

Luminar LiDAR highway perception

“Autonomous drive has the potential to be one of the most lifesaving technologies in history, if introduced responsibly and safely,” said Henrik Green, chief technology officer at Volvo Cars. “Providing our future cars with the vision they require to make safe decisions is an important step in that direction.”

In addition to the Highway Pilot feature, Volvo Cars and Luminar are also exploring LiDAR’s role in improving future advanced driver assistance systems (ADAS), with the potential for equipping all future SPA2-based cars with a LiDAR sensor as standard.

Luminar’s technology is based on its high performance LiDAR sensors, which emit millions of pulses of laser light to accurately detect where objects are by scanning the environment in 3D, creating a temporary, real-time map without requiring internet connectivity.

LiDAR is key in creating cars that can navigate safely in autonomous mode, providing them with the reliable vision and perception that cameras and radar alone cannot provide. LiDAR is the ideal basis for safe decision-making in complex environments at high speeds.

Luminar roofline LiDAR integration

To enable the Highway Pilot feature, Luminar’s perception technology will be combined with autonomous drive software and the cameras, radars and back-up systems for functions such as steering, braking and battery power installed on forthcoming Volvo cars equipped for self-driving. Put together, this gives Volvo users who want it access to a safe, fully self-driving feature for use on highways.

“Soon, your Volvo will be able to drive autonomously on highways when the car determines it is safe to do so,” said Henrik Green. “At that point, your Volvo takes responsibility for the driving and you can relax, take your eyes off the road and your hands off the wheel. Over time, updates over the air will expand the areas in which the car can drive itself. For us, a safe introduction of autonomy is a gradual introduction.”

As part of the announcement, Volvo Cars and Luminar are deepening their collaboration to jointly ensure robust industrialisation and validation of Luminar’s LiDAR technology for series production. Volvo Cars has also signed an agreement to possibly increase its minority stake in Luminar.

Luminar Iris LiDAR for series production

For Silicon Valley-based Luminar, partnering with Volvo Cars represents the company’s first delivery of its technology into series production. This is a key step to achieving the economies of scale that are required to bring the technology to the wider automotive industry.

“Volvo is recognised as the pioneer of automotive safety, having driven standardisation across the industry for the most advanced life-saving technologies,” said Austin Russell, founder and CEO of Luminar. “The next era of safety lies within autonomous driving and once again, Volvo has taken the lead with a major industry milestone. We’ve solved the key cost, performance, and auto-grade challenges to make series production possible, and alongside Volvo are making the technology available to the world.”

Source: Volvo Media

In motion: solutions for the mobility of today and tomorrow

Powerful computing for the electronics architecture of the future – vehicle computers: Increasing electrification, automation, and connectivity are placing ever higher demands on vehicles’ electronics architecture. One key to the vehicles of the future lies in the new high-performance vehicle control units. Bosch vehicle computers will increase computing power in vehicles by a factor of 1,000 by the start of the next decade. The company is already producing these kinds of computers for automated driving, the powertrain, and the integration of infotainment systems and driver assistance functions.

Full power – services for electromobility: Bosch’s Battery in the Cloud prolongs the life of batteries in electric cars. Smart software functions analyze the status of the battery based on real-time data from the vehicle and its surroundings. It recognizes stress factors for the battery, such as high-speed charging. On the basis of the data collected, the software then calculates measures to counter cell aging, such as optimized recharging processes that mean less wear and tear for the battery. Convenience Charging, Bosch’s integrated recharging and navigation solution, allows for a precise range forecast, route planning that includes recharging stops, and convenient recharging and payment.

E-mobility for the long haul – fuel-cell system: Mobile fuel cells offer long ranges, short refueling times, and – with hydrogen produced using renewable energy – emissions-free vehicle operation. Bosch plans to commercialize a fuel-cell stack that it has refined together with the Swedish company Powercell. In addition to the stack, which converts hydrogen and oxygen into electrical energy, Bosch is developing all the essential fuel-cell system components to a production-ready stage.

Connected products that save lives – Help Connect: Someone who has had an accident needs help fast – regardless of whether they are at home, on a bicycle, doing sports, in a car, or on a motorcycle. For these and any other emergency situations, Bosch offers a guardian angel in the form of Help Connect. Available as a smartphone app, this connectivity solution transmits lifesaving information to emergency services via Bosch service centers. The solution requires automated accident detection, for instance via the smartphone sensors or the vehicle’s assistance systems. For this purpose, Bosch has added a smart crash algorithm to the acceleration sensors in its MSC motorcycle stability control system. Should the sensors detect an accident, they report the crash to the app, which immediately sets the rescue process in motion. Once it has been registered, the lifesaving solution can be activated at any time, in any place – automatically in connected devices or at the push of a button.

(Source: Bosch Media)

Automated driving in cities

Bosch and Daimler select Nvidia AI platform

  • Bosch and Daimler to source Drive Pegasus platform AI processors and software supplied by the U.S. AI computing company Nvidia
  • Systems architectures for fully automated and driverless urban driving must be versatile, redundant, and fail-operational.
  • Bosch and Daimler machine-learning methods will generate vehicle-driving algorithms.
  • ECU network for automated urban driving handles hundreds of trillion operations per second.

Stuttgart – Automated vehicles are complex computers on wheels. And they need even more computing power if they are to negotiate city traffic automatically, with input sourced from an array of disparate surround sensors. In their alliance to put highly automated and driverless vehicles on urban streets, Bosch and Daimler have specified the computing power needed for their prospective system. The two companies have selected and signed an agreement with the U.S. AI computing company Nvidia as a supplier for the artificial intelligence (AI) platform they need. AI is an important building block in fully automated and driverless vehicles’ network of several individual ECUs (Electronic control units). Under this contract, Nvidia will provide its Drive Pegasus platform powered by high performance AI automotive processors along with system software that will process the vehicle-driving algorithms generated by Bosch and Daimler using machine-learning methods. As a result, the ECU network will reach a computing capacity of hundreds of trillion operations per second. This is akin to the performance delivered by at least six synchronized, highly advanced deskside computer workstations. Bosch and Daimler will also be able to tap Nvidia’s expertise to help develop the platform.

Sensor data processed within fractions of a second
A versatile, redundant, and fail-operational systems architecture is needed to make automated driving in cities a reality. The performance bar for the networked ECUs is no lower, as navigating city traffic is a tremendous amount of work. This network handles all the information gathered and transmitted by disparate radar, video, lidar, and ultrasonic sensors. Just one video sensor, such as Bosch’s stereo video camera, generates 100 gigabytes of data in just one kilometer. The ECU network combines data sourced from all the surround sensors in a process called sensor fusion. Within fractions of a second, it assesses this information and plans the trajectory of the vehicle. This is as fast as the sensation of touch that needs between 20 and 500 milliseconds to reach the human brain. Bosch and Daimler bring many years of experience to the development of functional safety systems. To achieve maximum safety and reliability, the necessary computing operations are done by a number of circuits in parallel. In the unlikely event of a malfunction, the results of these parallel calculations can be accessed in a flash.


ECU network to be integrated into battery cells’ cooling circuit
The high computing capacity and the huge number of operations to be performed mean that the ECU network needs to be cooled. Bosch and Daimler developed an efficient concept based on liquid cooling. In this jointly developed system for highly automated and driverless driving in cities, Mercedes-Benz intends to deploy battery-powered vehicles. These cars have a cooling system on board, so engineers can make the most of this legacy technology by integrating the ECU network into the battery cells’ advanced cooling circuit.

(Source: Bosch Media)

Key elements for autonomous driving functions

Information from ZF:

  • Developing new and extremely high-performance assistance solutions
  • New mobility concepts
  • Vision Zero Accidents

Instead of driving the vehicle, you can opt to do something else: That is the vision of autonomous driving. ZF systems are already coming close to making this vision a reality.

https://www.zf.com/corporate/en_de/products/technologietrends/autonomous_driving/autonomous_driving.html?pk_campaign=20180426-ZF_NorthAmerica_ZF&pk_source=SAE%20Autonomous%20Vehicle%20eNewsletter&pk_medium=E-Mail&pk_content=49-728×90-Sudoku_EN

Car data and who has access?

There is much discussion around at the moment about access to car data and talk of the DLC being removed.

There are genuine arguments on all sides of course but the danger of unauthorised access is very real – particularly as we automate the driving further.

Here is some useful information from http://cardatafacts.eu/vehicle-data-available-service-providers/ which is part of www.acea.be

Interested service providers will be able to access the vehicle data they need through a secure remote server, on the basis of a contract with the vehicle manufacturer.

In addition, independently-managed neutral servers can be set up to make vehicle data readily available to interested third parties without the need to sign a contract with the manufacturer of a car, van, truck or bus. These servers are totally ‘neutral’, meaning that they are neither operated nor financed by the manufacturers but by an independent party. Of course, these neutral server operators are required to implement state of the art security and data protection measures.

Various companies have already shown an interest in setting up such independently-managed servers. IBM, for example, recently launched a service to make vehicle data accessible through their cloud platform to parties that want to develop new and innovative services.

The neutral server will also facilitate data access, in particular for small and medium-sized companies, by offering multi-brand data access on one server, rather than obliging them to use multiple servers of individual manufacturers.

Moreover, the neutral server ensures customer choice. With a neutral server, vehicle users are free to obtain services from the vehicle manufacturer, his network of authorised repairers or any other service provider of their choice.

Service providers can have fair and reasonable access to the data they need to offer their services to vehicle users. That includes independent repair shops, fleet operators, insurance companies, etc. Any information that is available to the vehicle manufacturer’s network of authorised repairers will be made available on the same conditions to independent third parties that offer competing services: the same type, amount and quality of data, at the same time, at the same price.

This concept for the transfer of vehicle-generated data ensures access in a fully transparent and anonymised manner. That is, the neutral server enables service providers (as well as the exact services they offer) to remain unknown to the vehicle manufacturer. Thus, it contributes to innovation and allows fair and open competition.

[amazon_link asins=’0415725763′ template=’ProductCarousel’ store=’automotivetechno’ marketplace=’UK’ link_id=’87d46865-cdd2-11e7-984c-2305f492bf37′]

Cycle recognition and emergency braking

Introduction

 

Another narrow escape: a cyclist appears as if out of nowhere and suddenly crosses the road. Distracted by the search for somewhere to park, the driver is powerless to avert what appears to be an inevitable disaster. Yet Bosch’s new emergency braking system with cyclist detection prevents any serious consequences, automatically bringing the car to a full stop from 40 kph. Everyone makes it through the incident, shaken but unharmed. As soon as the emergency braking system’s radar or video sensor detects an imminent collision, the Bosch iBooster initiates full braking in just 190 milliseconds – less time than it takes to blink twice. “Driver assistance systems are the next step along the path toward accident-free driving,” says Bosch board of management member Dr. Dirk Hoheisel. “These electronic assistants are always vigilant and, in emergencies, they respond more quickly than people can. They provide support just where drivers need it – in busy city traffic.” Emergency braking systems are one of the most useful assistance systems, particularly when it comes to responding to cyclists and pedestrians, the most vulnerable of road users.

 

More protection where most needed

In Germany, bicycles are involved in one-fourth of all accidents resulting in personal injury. According to the German Federal Statistics Office, 393 people were killed in such accidents in 2016 alone – roughly 12 percent of the country’s total road fatalities. Some two-thirds of these accidents involve a car. Equipping every car in Germany with an emergency braking system that can detect cyclists would prevent almost half (43 percent) the bicycle/motor vehicle accidents that result in personal injury, or at least mitigate their severity. “An emergency braking assistant may reduce braking distance by the few crucial centimeters that can mean the difference between life and death,” says Gerhard Steiger, president of Bosch’s Chassis Systems Control division. The European New Car Assessment Program, or Euro NCAP, has also recognized the importance of emergency braking systems for road safety. Starting in 2018, the consumer protection association’s star rating system will include emergency braking with cyclist detection. Emergency braking systems with pedestrian detection have been part of the rating system since 2016.

Electronic assistants growing in popularity

In light of rising volumes of road traffic, driver assistance systems offer the full package – and hold the key to increased road safety. They keep cars in their lanes, warn of obstacles in the blind spot when changing lanes, provide support for pulling into and out of parking spots, and help maintain following distance, to name just a few examples. Bosch is constantly honing the technology behind these driver assistance systems: sensors supply increasingly precise images of the car’s surroundings, and their interaction with actuators, such as braking and steering, is steadily becoming faster and more efficient. In this way, driver assistance systems are not only preparing the path toward automated driving, but are already delivering stress-free and relaxed driving. No wonder, then, that the spread of electronic assistants is picking up. A Bosch survey found that half of all new cars (52 percent) in Germany have at least one driver assistance system on board. The trend is toward consolidating multiple assistance functions on one sensor, as demonstrated by car exit warning, a new function developed by Bosch.

Radar offers a constant over-the-shoulder view

Bosch’s rear mid-range radar sensors, which monitor lane changes on the freeway, can also keep city drivers from making a dangerous mistake: after parallel parking at the curb, drivers often get out of their cars right away – without looking over their shoulder. This has led to countless cyclists getting painfully up close and personal with car doors as they are knocked unceremoniously to the pavement. But Bosch’s car exit warning can help. It is active for all car doors and warns the occupants – even several minutes after the ignition has been turned off – before they carelessly get out of the vehicle. Mounted to the left and right of the rear of the car, the Bosch sensors monitor traffic. Within a 20-meter radius, the sensors can detect other road users who are approaching from the rear, or who are already to the side or rear of the car, and promptly warn the driver before they open their door.

 

(Source: Bosch Media)