Staying on track despite malfunctions

How driverless shuttles get safely from A to B Project 3F presents its results on automated driving at low speed

  • On course: vehicles can continue driving in spite of altered circumstances along theroute and technical failures in the system
  • On board: people and goods transported on test grounds in Renningen and Aachen
  • As a team: six partners involved in the publicly funded project

Renningen, Germany – Ferrying visitors from tram stop to exhibition center, supplementing public transport routes, moving containers full of packages in a logistics center: all these are possible use cases for driverless shuttles. The main thing is for them to be able to get safely from A to B – safely in both senses: reliably and without danger. This is what Project 3F, “Driverless and fault-tolerant vehicles in the low-speed range,” set out to achieve, with a focus on fail-safe operation. “The aim was to develop solutions to ensure that automated shuttles can move around safely, even if a technical malfunction occurs or obstacles suddenly appear,” says Steffen Knoop, project leader in research and advance engineering at Robert Bosch GmbH.

Specifically, the project team was concerned with making sure that the system does not fail completely in the event of a fault, but rather that the vehicle can continue to drive. With 4.3 million euros in funding from the German Federal Ministry of Economic Affairs, the project featured Bosch as the consortium leader and involved three other companies, a university, and a research institute: StreetScooter GmbH, RA Consulting GmbH, the FZI Research Center for Information Technology, Finepower GmbH, and RWTH Aachen University.

Better safe than sorry: redundant power supply and sensor technology
“Driverless shuttle buses need to meet different requirements than, say, highly automated passenger cars,” explains Bosch project coordinator Thomas Schamm. To operate without (safety) drivers, shuttles must be able to monitor their system autonomously – in other words, perform diagnostic tasks – and cope with any technical faults detected so that they can continue driving. At the same time, they must be able to secure the system in the event of critical faults, for example by bringing themselves to a stop. Project 3F has been working on what the requirements look like in detail, how the systems must be designed on that basis, and how to optimize the way the individual components interact.

One solution is to build in redundancy, in other words to duplicate safety-relevant functions. For example, the researchers developed redundant systems for the power supply so that the electrical powertrain and vehicle electrical system are reliably protected. They also adapted and refined the sensor technology to suit the vehicle design. In order to reliably detect obstacles, they installed several lidar and radar sensors at various points around the vehicle, giving it the ability to observe its surroundings from different positions. By delivering a 360-degree birds-eye view and avoiding blind spots, this creates a kind of 3D protection zone. This setup not only detects obstacles on the road, such as barriers, it also spots things like hanging branches.
Detect, classify, adjust driving behavior.

Another solution is to build in fault tolerance, whereby the failure of a subsystem is at least partly compensated for by other functions. This is a bit like how it is with people: if the lights suddenly go out in a room, we use our other senses and feel our way around instead of becoming paralyzed. The shuttle behaves in a similar way: if it is blind in a certain area, say because leaves are stuck to the sensor or a large object such as a dumpster is completely blocking the view in one direction, it slows down or omits the parts of the route that can no longer be detected.

In addition, the project worked to ensure that shuttle buses can also react to altered circumstances along their defined route. The vehicles are programmed to slow down when any moving objects approach or, in case of doubt, to give unknown objects a wide berth. When they identify familiar landmarks such as streetlights, on the other hand, they resume their journey at full speed. If there is any imminent danger, the shuttle will come to a precautionary stop. The objective is for the vehicle to adapt its driving behavior to the circumstances in real time while also continuing on its journey automatically whenever possible, even in the event of system malfunctions or obstacles in its path.

Three times the telemetry, twice the usability
Data on the journey being undertaken and the current technical status can be transmitted from the vehicle and back to it. Information on three different functions is transmitted back and forth: diagnostics, monitoring, and control. So that is three times the telemetry, which is why we’re calling it “teletrimetry.” This lays the foundation for an entire fleet of automated shuttle buses to be remotely monitored, as well as repaired or even controlled, for instance to open the doors. It means the vehicles will get help if they do ever reach their fault-detection and compensation limits, or if they simply require scheduled maintenance.

The solutions developed in the project work not only for driverless shuttle buses. They can also provide robust support for logistics processes. Project members developed an assistance system for driver-vehicle interaction that enables highly accurate positioning of swap body lifting trucks – special vehicles for moving containers in logistics centers. The objective here was to move the vehicles with centimeter precision underneath gantry cranes to enable the swift removal of transport containers. This requires precise localization and a form of automated parking under the gantry. In practice, this automated maneuver enables error-free container collection and positioning.

These developments were tested on several test tracks: at Bosch’s research campus in Renningen, two shuttle buses trialed the transportation of people around a site shared with pedestrians; while at an innovation park near Aachen and in the area around a Deutsche Post/DHL depot, a logistics vehicle was deployed to test the interaction between driver and automated vehicle.
Further information is available online at www.3f-projekt.de (German only)
Supported by the Federal Ministry for Economic Affairs and Energy following a resolution of the German Bundestag.

In motion: solutions for the mobility of today and tomorrow

Powerful computing for the electronics architecture of the future – vehicle computers: Increasing electrification, automation, and connectivity are placing ever higher demands on vehicles’ electronics architecture. One key to the vehicles of the future lies in the new high-performance vehicle control units. Bosch vehicle computers will increase computing power in vehicles by a factor of 1,000 by the start of the next decade. The company is already producing these kinds of computers for automated driving, the powertrain, and the integration of infotainment systems and driver assistance functions.

Full power – services for electromobility: Bosch’s Battery in the Cloud prolongs the life of batteries in electric cars. Smart software functions analyze the status of the battery based on real-time data from the vehicle and its surroundings. It recognizes stress factors for the battery, such as high-speed charging. On the basis of the data collected, the software then calculates measures to counter cell aging, such as optimized recharging processes that mean less wear and tear for the battery. Convenience Charging, Bosch’s integrated recharging and navigation solution, allows for a precise range forecast, route planning that includes recharging stops, and convenient recharging and payment.

E-mobility for the long haul – fuel-cell system: Mobile fuel cells offer long ranges, short refueling times, and – with hydrogen produced using renewable energy – emissions-free vehicle operation. Bosch plans to commercialize a fuel-cell stack that it has refined together with the Swedish company Powercell. In addition to the stack, which converts hydrogen and oxygen into electrical energy, Bosch is developing all the essential fuel-cell system components to a production-ready stage.

Connected products that save lives – Help Connect: Someone who has had an accident needs help fast – regardless of whether they are at home, on a bicycle, doing sports, in a car, or on a motorcycle. For these and any other emergency situations, Bosch offers a guardian angel in the form of Help Connect. Available as a smartphone app, this connectivity solution transmits lifesaving information to emergency services via Bosch service centers. The solution requires automated accident detection, for instance via the smartphone sensors or the vehicle’s assistance systems. For this purpose, Bosch has added a smart crash algorithm to the acceleration sensors in its MSC motorcycle stability control system. Should the sensors detect an accident, they report the crash to the app, which immediately sets the rescue process in motion. Once it has been registered, the lifesaving solution can be activated at any time, in any place – automatically in connected devices or at the push of a button.

(Source: Bosch Media)

Curved instrument cluster

Bosch is putting the world’s first curved instrument cluster in the cockpit of a mass-production vehicle. What has long since arrived in people’s living rooms at home and for the smartphone is now being put on the road by Bosch as the first of its kind in mass production. “The days of flat instrument displays are over. With the world’s first curved instrument cluster, Bosch is opening up a new dimension in vehicle cockpits,” says Steffen Berns, president of the Car Multimedia division. The “curved” instrument cluster will be celebrating its debut in the Innovision Cockpit of the new VW Touareg. This means that Volkswagen is now replacing analog display technology behind the steering wheel with a freely configurable, high-resolution, curved display. Depending on what the driver wants to see at any given time, the screen is able to display large-area navigation maps, driver information or the status of the assistance systems. The secret behind the sharpness and contrast of the new displays is a new manufacturing process, with which the instrument cluster reflects more than four times less light, even in the sunlight.

The days of flat instrument displays are over. With the world’s first curved instrument cluster, Bosch is opening up a new dimension in vehicle cockpits.“
Steffen Berns, president of the Car Multimedia division

More safety, more space, more freedom

These days, everyone knows that the world is not flat. With a consistently digital, curved instrument display, Bosch is now proving that instrument clusters in the vehicle also no longer have to be flat. Its curvature mimics the natural curvature of the human eye. As a result, the driver is able to much better detect indicator lights and warning signals, even at the edge of the screen. This also gives it a clear advantage over the familiar curved monitors at home in the living room, where only one person can sit at the optimum viewing angle at any one time. In contrast, the curved instrument cluster in a vehicle always optimally accommodates the driver’s view. “Drivers benefit from curved instrument clusters in terms of safety and convenience. At the same time, this type of display gives automotive manufacturers greater freedom and more space in the design of the cockpit,” says Berns. Nowadays, automotive manufacturers increasingly want to avoid using mechanical switches, knobs, and controls. However, large-sized monitors are very high on the wish list – as is the curved instrument cluster made by Bosch. Beneath its surface, it combines a large number of digital displays, while taking up almost two centimeters less space than a non-curved screen of comparable size.

“Whatever you want” in the cockpit

Speedometer, navigation maps, and telephone list: the contents displayed on the instrument cluster with a screen diagonal of close to 31 centimeters (12.3 inches) are determined by the driver depending on the driving situation and personal preference. An intelligent control system, which – invisible to the driver – is concealed behind the cockpit on a control unit. It ensures that the driver always sees exactly the screen contents that he wants to see at a glance. There is a choice, for example, from between detailed information on the current journey, the navigation map, telephone contacts, or details on the playlist currently playing. Each piece of information can be displayed over the entire screen or shown in combination with other contents. So anyone who wants to display the navigation map and the telephone list in addition to the traditional speedometer can do so easily and conveniently by making those selections using the multifunction steering wheel or the infotainment’s touchscreen. It is also possible to perform a targeted zoom into the navigation map directly on the instrument cluster – another novel feature that will debut in the Touareg’s Innovision Cockpit.

Four times less glare

Vibrations, temperature fluctuations, susceptibility to malfunctions: the demands placed on vehicle displays in terms of quality and robustness are high. In addition, the driver must be able to reliably read screen displays even when the sun is shining directly on the vehicle display. That is why Bosch’s new curved instrument cluster uses a special manufacturing process. Up to now, this process was used to make screens for flat displays with high contrast, even in bright ambient light. In cooperation with partners, Bosch is now using this process for the first time in the large-scale production of a curved display for the vehicle cockpit. In optical bonding – which is what this process is called – a thin liquid is used to bond the instrument display and glass directly to each other. Thanks to the perfect connection of the two components, the instrument cluster reflects more than four times less light. For the driver, this means that there is virtually no glare and the display is rich in contrast and clear in both direct sunlight and darkness.

Key elements for autonomous driving functions

Information from ZF:

  • Developing new and extremely high-performance assistance solutions
  • New mobility concepts
  • Vision Zero Accidents

Instead of driving the vehicle, you can opt to do something else: That is the vision of autonomous driving. ZF systems are already coming close to making this vision a reality.

https://www.zf.com/corporate/en_de/products/technologietrends/autonomous_driving/autonomous_driving.html?pk_campaign=20180426-ZF_NorthAmerica_ZF&pk_source=SAE%20Autonomous%20Vehicle%20eNewsletter&pk_medium=E-Mail&pk_content=49-728×90-Sudoku_EN

Bosch diesel technology provides solution to NOx problem

Bosch CEO Denner also calls for transparency on fuel consumption and CO2 emissions

  • „Unprecedented emissions: NOx 10 times lower than limits set for 2020
  • „New Bosch technology retains advantage with regard to fuel consumption and environmental impact
  • „Denner: “There’s a future for diesel. Soon, emissions will no longer be an issue.”
  • „Internal combustion engines equipped with artificial intelligence have almost zero impact on air quality
  • „Appeal to politicians: fuel consumption should be measured on the road and emissions analysed from well to wheel

Stuttgart and Renningen, Germany: “There’s a future for diesel. Today, we want to put a stop, once and for all, to the debate about the demise of diesel technology.” It was with these words that the Bosch CEO Dr. Volkmar Denner, speaking at the company’s annual press conference, announced a decisive breakthrough in diesel technology. New developments from Bosch could enable vehicle manufacturers to reduce emissions of nitrogen oxides (NOx) so drastically that they already comply with future limits. Even in RDE (real driving emissions) testing, emissions from vehicles equipped with the newly premiered Bosch diesel technology are not only significantly below current limits but also those scheduled to come into force from 2020. Bosch engineers achieved these results by refining existing technologies. There is no need for additional components, which would drive up costs. “Bosch is pushing the boundaries of what is technically feasible,” Denner said. “Equipped with the latest Bosch technology, diesel vehicles will be classed as low-emission vehicles and yet remain affordable.” The Bosch CEO also called for greater transparency with regard to the CO2 emissions caused by road traffic and called for fuel consumption and thus CO2 emissions to be also measured under real conditions on the road in the future.

[amazon_link asins=’B074PTW18Q’ template=’ProductCarousel’ store=’automotivetechno’ marketplace=’UK’ link_id=’64c1d241-4874-11e8-afd3-e7468f340573′]

Record readings under real driving conditions: 13 mg NOx per kilometre

Since 2017, European legislation has required that new passenger car models tested according to an RDE-compliant mix of urban, extra-urban, and freeway cycles emit no more than 168 milligrams of NOx per kilometre. As of 2020, this limit will be cut to 120 milligrams. But even today, vehicles equipped with Bosch diesel technology can achieve as little as 13 milligrams of NOx in standard legally-compliant RDE cycles. That is approximately one-tenth of the prescribed limit that will apply after 2020. And even when driving in particularly challenging urban conditions, where test parameters are well in excess of legal requirements, the average emissions of the Bosch test vehicles are as low as 40 milligrams per kilometre. Bosch engineers have achieved this decisive breakthrough over the past few months. A combination of advanced fuel-injection technology, a newly developed air management system, and intelligent temperature management has made such low readings possible. NOx emissions can now remain below the legally permitted level in all driving situations, irrespective of whether the vehicle is driven dynamically or slowly, in freezing conditions or in summer temperatures, on the freeway or in congested city traffic. “Diesel will remain an option in urban traffic, whether drivers are tradespeople or commuters,” Denner said.

Bosch delivered proof of this innovative advance at a major press event in Stuttgart. Dozens of journalists, from both Germany and abroad, had the opportunity to drive test vehicles equipped with mobile measuring equipment in heavy city traffic, under especially challenging conditions. The results recorded by the journalists, along with the route driven, can be viewed here. As the measures to reduce NOx emissions do not significantly impact consumption, the diesel retains its comparative advantage in terms of fuel economy, CO2 emissions, and therefore climate-friendliness.

Artificial intelligence can further boost combustion engines’ performance

Even with this technological advance, the diesel engine has not yet reached its full development potential. Bosch now aims to use artificial intelligence to build on these latest advances. This will mark another step toward a major landmark: the development of a combustion engine that – with the exception of CO2 – has virtually no impact on the ambient air. “We firmly believe that the diesel engine will continue to play an important role in the options for future mobility. Until electromobility breaks through to the mass market, we will still need these highly efficient combustion engines,” Denner said. His ambitious target for Bosch engineers is the development of a new generation of diesel and gasoline engines that produce no significant particulate or NOx emissions. Even at Stuttgart’s Neckartor, a notorious pollution black spot, he wants future combustion engines to be responsible for no more than one microgram of NOx per cubic meter of ambient air – the equivalent of one-fortieth, or 2.5 percent, of today’s limit of 40 micrograms per cubic meter.

Bosch wants to go further: transparency and realistic testing for consumption and CO2

Denner also called for a renewed focus on CO2 emissions, which are directly related to fuel consumption. He said that consumption tests should no longer be conducted in the lab but rather under real driving conditions. This would create a system comparable to the one used for measuring emissions. “That means greater transparency for the consumer and more focused climate action,” Denner said. Moreover, any assessment of CO2 emissions should extend significantly further than the fuel tank or the battery: “We need a transparent assessment of the overall CO2 emissions produced by road traffic, including not only the emissions of the vehicles themselves but also the emissions caused by the production of the fuel or electricity used to power them,” Denner said. He added that a more inclusive CO2 footprint would provide drivers of electric vehicles with a more realistic picture of the impact of this form of mobility on the climate. At the same time, the use of non-fossil fuels could further improve the CO2 footprint of combustion engines.

Product development code: ethical technology design

Denner, who also has corporate responsibility for research and advance engineering, presented Bosch’s product development code to the public. This lays down the company’s principles for the development of Bosch products. First, the incorporation of functions that automatically detect test cycles is strictly forbidden. Second, Bosch products must not be optimized for test situations. Third, normal, everyday use of Bosch products should safeguard human life as well as conserve resources and protect the environment to the greatest possible extent. “In addition, the principle of legality and our ‘Invented for life’ ethos guide our actions. If in doubt, Bosch values take precedence over customers’ wishes,” Denner said. Since mid-2017, for example, Bosch has no longer been involved in customer projects in Europe for gasoline engines that do not involve the use of a particulate filter. A total of 70,000 associates, mainly from research and development, will receive training in the new principles by the end of 2018, as part of the most extensive training program in the company’s more than 130-year history.

Technical questions and answers on the new Bosch diesel technology

What distinguishes the new diesel technology?

To date, two factors have hindered the reduction of NOx emissions in diesel vehicles. The first of these is driving style. The technological solution developed by Bosch is a highly responsive air-flow management system for the engine. A dynamic driving style demands an equally dynamic recirculation of exhaust gases. This can be achieved with the use of a RDE-optimized turbocharger that reacts more quickly than conventional turbochargers. Thanks to a combination of high- and low-pressure exhaust-gas recirculation, the air-flow management system becomes even more flexible. This means drivers can drive off at speed without a spike in emissions. Equally important is the influence of temperature. To ensure optimum NOx conversion, the exhaust gases must be hotter than 200 degrees Celsius. In urban driving, vehicles frequently fail to reach this temperature. Bosch has therefore opted for a sophisticated thermal management system for the diesel engine. This actively regulates the exhaust-gas temperature, thereby ensuring that the exhaust system stays hot enough to function within a stable temperature range and that emissions remain at a low level.

When will the technology be ready for production?

Bosch’s new diesel system is based on components that are already available in the market. It is available to customers effective immediately and can be incorporated into production projects.

Why is urban driving more demanding than extra-urban or freeway driving?

To ensure optimum NOx conversion, the exhaust gases must be hotter than 200 degrees Celsius. This temperature is often not reached in urban driving, when cars are stuck in gridlock or stop-and-go traffic. As a result, the exhaust system cools down. Bosch’s new thermal management system remedies this problem by actively regulating the exhaust gas temperature.

Does the temperature regulation require an auxiliary 48-volt heater installed in the exhaust-gas system or additional components of a similar kind?

Bosch’s new diesel system is based on components already available in the market and does not require an additional 48-volt on-board electrical system.

Will the new Bosch technology make the diesel engine significantly more expensive?

The Bosch diesel technology is based on components already in use in production vehicles. The decisive advance comes from a new combination of existing technology. It does not require any additional hardware components. So, reducing emissions will not make diesel vehicles any less affordable.

Will the diesel engine lose its comparative advantage in fuel economy and climate-friendliness as a result of the new technology?

No. Our engineers’ goal was clear: to reduce NOx emissions while retaining the diesel’s comparative advantage in terms of CO2 emissions. Diesel will thus remain a climate-friendly option.

AI in self-driving cars – sci-fi no longer

Intelligent machines powered by artificial intelligence (AI) computers that can learn, reason and interact with people and the surrounding world are no longer science fiction. Thanks to a new computing model called deep learning using powerful graphics processing units (GPUs), AI is transforming industries from consumer cloud services to healthcare to factories and cities.

A great article from Bosch, more here:

http://blog.bosch-si.com/categories/mobility/2017/01/ai-self-driving-cars-nvidia-bosch/

 

Super truck will turn roads into data highways: Bosch VisionX

Bosch VisionX

  • VisionX concept study provides a glimpse into the future of truck driving
  • Automated driving in platoons will take the strain off drivers, improve economic efficiency, and make driving safer
  • Hybridization and connectivity help improve the overall cost picture

Stuttgart/Hannover – At the 66th IAA Commercial Vehicles trade fair, Bosch will be presenting a 40-ton smart device in the form of a truck tractor – all part of its VisionX concept study on the future of commercial vehicles. “Connected, electrified, and automated – that’s the future of trucks. And that’s what Bosch has encapsulated in VisionX,” says Dr. Markus Heyn, member of the board of management of Robert Bosch GmbH. One of the many technologies envisaged in VisionX is platooning. Besides making life easier for drivers on long journeys, this also represents a significant safety improvement. What’s more, platooning offers a major boost to transport efficiency.

Platooning: automated slipstream driving on the freeway

In the future, multiple assistance systems will combine with automation to make trucks safer and more reliable – almost as if they were on rails. Vehicles will receive all the data they need in real time from the Bosch IoT Cloud, including information on their route, traffic congestion, detours, and the unloading facilities available at their destination. This lets them avoid downtime. What’s more, some aspects of driving will be taken over by the truck itself. For instance, once it reaches the freeway, it joins a platoon – a kind of freight train composed of trucks. In such a platoon, the truck is one of a number of trucks all following a lead vehicle to which they are electronically connected and linked. With the convoy members accelerating, braking, and steering in sync, automated driving reaches a whole new level, increasing safety and taking the strain off drivers. The driver steers the truck until it receives data identifying a suitable convoy. The same applies when the truck leaves the platoon to exit the freeway; at that point, the driver resumes control to complete the journey in manual or partially automated mode.

„Connected and automated trucks are the future, and we are looking to play a major part in their development.“
Dr. Markus Heyn, member of the board of management of Robert Bosch GmbH
Making life easier for drivers, particularly on long-haul routes

“Once the truck joins a convoy on the freeway, drivers can start planning their next route while still remaining in complete control. They can access all key information on the screens in their cab and take the wheel if they need to,” says Heyn. “Connected and automated trucks are the future, and we are looking to play a major part in their development.”

Boosting efficiency through hybrid technology and convoying

Increasing efficiency still further will continue to be a major focus in the future. That’s why the Bosch VisionX concept study takes the diesel engine – which is particularly economical in the world of heavy goods transport – and combines it with electric motors for auxiliary systems such as the hydraulic pump. Trucks of the future will benefit not only from this hybrid technology, but also from the advantages of convoying, which include improved safety thanks to coordinated braking, accelerating, and steering, as well as a significant economic plus. “In a convoy, you can combine the safety gains of automated driving with the efficiency boost that is so crucial to the commercial vehicle sector,” says Heyn. “Slipstream driving enables fuel savings of up to 10 percent. That’s a strong argument in the commercial vehicle industry.”

VisionX as part of the connected logistics chain

“Perfectly connected like a smart device, the truck of the future will become a key component of international logistics processes,” states Heyn. Bosch’s new systems will make drivers’ lives easier in many ways – from accepting shipping documents and loading the truck, to carrying out automated maneuvers once the truck arrives at its destination. By accessing the Bosch IoT Cloud, hauliers and customers will be able to track where the truck and its cargo are located at any point in time. What’s more, drivers will be able to find and reserve parking spaces along the route, making the journey less stressful.

Innovation is in the details, too

Although a truck’s fuel consumption plays a key role in the total cost of ownership, other factors also play a major part, such as the losses incurred when trucks stand idle. The Bosch VisionX concept study shows how much scope there is for optimizing this situation in the future, too. For example, predictive maintenance can monitor the technical condition of a truck in real time and inform the freight forwarder of any maintenance work or repairs that are due. This is the best way to plan breaks in a truck’s schedule, thus keeping downtime to a minimum and further boosting transport efficiency.

Source: Bosch Media